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Abstract. The performance of attractor neural networks storing sparsely coded patterns 
has been shown to be greatly improved on shifting from the -1, +1 representation of 
neural states to the 0, 1 representation. Here we show that when this shift is considered 
as a special case of the transformation of the dynamical variables which depends on a 
continuous parameter, the value of the parameter can be chosen to improve the performance 
of the network even further for every value of the bias in the patterns. 

1. Introduction 

Sparse coding is entering the centre stage of attractor neural network ( A N N )  research 
(Amit et a1 1987a (hereafter referred to as AGS), Gutfreund 1988). It is intended to 
describe networks characterised by mean spatial levels of activity much lower than 
50%, typical of the original proposals (Hopfield 1982, Amit et a1 1985,1987b, Personnaz 
et a1 1985, Kanter and Sompolinsky 1987). One pressure in this direction comes from 
neurophysiological observations which find that typically no more than 5% of the 
neurons will fire within an absolute refractory period. The imaginative studies of 
Whilshaw et a1 (1969) have concentrated on memories of sparsely coded patterns 
because their technique-a feed-forward network-found it to be natural. Networks 
with feedback, A N N S ,  have made their initial advances storing patterns with 50% of 
the neurons active. 

Early studies of these systems (AGS) extended the Hopfield model so as to make 
it capable of storing and retrieving patterns with activities of (1 + a ) / 2 ,  where the bias 
( a )  can take arbitrary values in the interval, -1 s a S +l.  In the magnetic context a 
is the magnetisation per spin. The standard model (Hopfield 1982, Amit et a1 1985, 
1987b) stores and retrieves patterns with a = 0, by prescribing a synaptic matrix 

where 5” are patterns of randomly chosen +1 and -1, with equal probability, N is 
the number of neurons in the network and p is the number of stored patterns. The 
first step on the extension is to write 

for bias a. 
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This simple extension, which deals with the elimination of the finite mean noise 
projected by one pattern on another, leads to an extensive storage capacity for the 
network, but this capacity is always lower than that of the unbiased network. Recall 
that the storage capacity is defined as the maximal value of cy ( = P I N ) ,  for which 
retrieval is possible. Moreover, this prescription gives rise to a severe proliferation of 
spurious states even when the storage level is low, cy -+ 0, unless the configuration space 
of the network is constrained to states with a given level of activity (AGS). When the 
constraint is introduced the spurious states are suppressed; there is some mild increase 
in storage capacity for most of the values of the bias, with a final decrease to zero as 
a + 1; monotonic decrease to zero of the storage capacity per neuron. 

In a seminal paper Gardner (1988) has investigated the general space of con- 
nectivities (synaptic efficacies) which can have a given set of patterns as attractors. As 
a by-product she had found that ANNS can store biased patterns more effectively than 
unbiased ones. In fact, the storage capacity diverges as /a1 -+ 1. In the process a uniform 
optimising field (threshold) is introduced, which remains finite as lal+ 1. There is 
some reduction in the information content per spin, but its limit as a + 1 is finite. The 
divergence in the storage capacity of the network was corroborated (Buhmann et a1 
1987 (hereafter referred to as BSD),  Tsodyks and Feigelman 1988 (hereafter referred 
to as TF)) in an  explicit modification of the standard model. 

The main ingredient in the latter proposals (BSD, TF) has been a shift to VI = (0 , l )  
designations for natural activity states, from S, = (-1, +1) used previously. This shift 
is, of course, a mere formal step and can be effective only if it is accompanied by some 
assumption about local threshold. The natural description of the local field (post- 
synaptic potential-PsP) of a neuron i is 

h, =C J,V, (1.3) 
J 

where JIJ are synaptic efficacies and  V, = (0, 1) determines whether neuron j has been 
active and  will contribute J ,  to the PSP of the neuron i, or  is passive and will not 
contribute. The question of whether neuron i will emit a spike is decided by the variable 

U, = h, - T, 

where T, is the threshold of neuron i. If U, > 0 the firing probability is high and  if 
U, < 0 the probability is low. 

For the Hopfield model the reformulation in terms of the S = ( + l ,  -1) can be done 
by making the substitution 

v, = (SI + 1)/2 ( 1.4) 
which implies 

h, = t C  J , S J + i C  J,. 
J J 

In these terms the equivalence between both pictures V and S is complete. If one 
adds a neuronal threshold 

T , = $ C J ,  (1 -6) 
J 

the capacity associated with the ‘ S ’  model, with unbiased patterns, becomes double 
that of the ‘ V ’  model (Weisbuch and Fogelman-Soulie 1985, Bruce et a1 1987). 

To improve the network’s performance for sparsely coded patterns one chooses 

T , = U  
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where U is determined by optimising the retrieval properties. When this optimising 
field is appropriately fixed (TF, BSD), a can arrive close to the bound derived by 
Gardner. 

Clearly the transformation, equation (1.4), is a particular instance of 

SI + VI = (SI - b ) / 2  (1 .7)  

with b = -1. But the transformation can be extended to allow b to take values in 
[+1, -11. Accompanying the general change of dynamical variables will be a shift of 
local thresholds 

(1.8) 

on going from V variables to S variables. The main motivation of this paper is to 
show that there is a choice of the parameter b which optimises the performance of 
the network. 

hl+ hl - ( b / 2 )  c J y  
J 

Following the transformation the network is described by a Hamiltonian 

H = Jv ( SI - b ) ( S, - b ) (1.9) 
J 

where a factor of a will be systematically absorbed into Jl,. The minima of H are the 
stationary states of the following dynamics: 

S,(  t + 1) = sgn( h,) (1.10) 

where h, is 

hi Jv (S j  - b ) .  
i 

(1.11) 

Our main result is that the network performs best when b = a compared with other 
explicit storage prescriptions (AGS, TF, BSD). It coincides with the Hopfield model for 
a =o. 

The paper is structured as follows. In § 2 we study,the signal-to-noise ratio of the 
uniform external field and of the shift in the dynamical variables. In § 3 we derive 
the mean-field equations at finite noise T as well as in the limit T = 0. The study of 
the order parameters allows us to describe the behaviour of the simple memories and 
the spurious states as functions of the bias. In § 4 we analyse the influence of the 
uniform field on the performance of the network and discuss the role and form of the 
optimising field. In § 5 we analyse the asymptotic behaviour of the solutions of the 
mean-field equations to find an explicit expression for the divergence in the storage 
capacity. The results are confirmed by numerical computation. 

2. Signal-to-noise ratio 

A useful preliminary guide to the performance of the network can be obtained from 
the analysis of the signal-to-noise ratio in the local field (PSP). Equation ( l . l l ) ,  
supplemented by the uniform field, gives for the PSP of neuron i 
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where the synaptic efficacies are given by the modified Hebb rule (1.2) and U is the 
value of a uniform threshold. The random varuable l r  takes the value 5 1  with a 
probability distribution given by 

When the network state coincides with pattern v (Si = lr), the local field is 

which may be divided into a signal and a noise, namely 

In a large system one has for the signal 

s- (1 - a ’ ) ( l ; - a )  - U 

U = - a ( l -  u Z ) .  

which is optimised when (BSD) 

For this value of U the magnitude of the signals on all neurons is equalised to be 

1st = (1 - U * ) .  (2.7) 
The noise-the last term in (2.4)-is Gaussian with zero mean. Its mean square, 
evaluated with (2.2), is 

( R 2 )  = a (  1 - a2)2 (  1 + b 2  - 2ab). (2.8) 
The main qualitative observation of BSD and TF can be generalised to the fact that the 
random term -b C Jv in (2.3) reduces the noise. 

The value of b which minimises R is b = a. In this case the signal-to-noise ratio is 

ISl/R =[a( l  (2.9) 
which diverges as a + 1, i.e. the coding becomes sparse (Whilshaw et a1 1969). The 
amplification of the ratio ISI/R when the bias goes to i l  suggests an enhancement of 
the storage capacity. An estimation of this enhancement of a is 

a ,  = (1 - a* ) - ]  (2.10) 

arriving close to the bound derived by Gardner (1988). This approach is analysed in 
detail in the next section. In the unbiased case ( a  = 0) the optimal b is 0 and the 
standard result is recovered (AGS). If one takes b = 1 then the denominator in (2.9) 
becomes 6 and the capacity is reduced by a factor of 2 (Weisbuch and Fogelman- 
Soulie 1985, Bruce et a1 1987). 

3. Mean-field equations 

The transformation S, + (S, - b)/2 implies a dynamics governed by the Hamiltonian 

H = - i  C J v ( S , - b ) ( S , - b ) + U C S ,  (3.1) 
1 ’ J  I 

with synaptyic efficacies J,J given by (1.2). The models of biased neural networks 
studied previously are particular cases of this generalised expression. Concretely, when 
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b = -1  we recover the model of TF and RSD, when b = +1 that of Bruce et af (1987) 
and when b = 0 that of AGS. 

To study the statistical mechanics of the system we apply the replica method 
(Kirkpatrick and Sherrington 1978) to average over the quenched variables 6. The free 
energy in the replica symmetric approximation is 

) + ( 1 -- a ’) bx 
1-P1-P2C 2 

bffP 

ff f =  -( 1 - a’)( 1 - b’) + ( b  - x )  U 
2 

f fP +4 ( m ” ) ’ + - ( x y  + r[(l - b’) - (1 + b 2 ) q ] )  --(y -2br )  
P 2 2 

- L ( l n 2 c o s h [ ~ ( ~ z - ~ ( y - 2 b r ) + ~  f fP mP(l’”-  
P P 

where P is the inverse temperature, P I  = P (  1 - a’)( 1 - b’), P 2  = P (  1 - a’)( 1 + b’) and 
((. . .)) stands for the quenched average over the C and 

2b C=- 
( l + b ’ ) X - q *  

The various order parameters appearing in the free energy are defined at the saddle 
point: mr is a generalised overlap of a state with a learned pattern. The order parameter 
x, the mean activity of the network or the magnetisation, is 

and the Edwards-Anderson order parameter is 
1 

q p c = N ( 1 + b 2 )  -E (( Sf - b ) (  Sy - b)) + q for (3.4) 

where single brackets denote thermal or temporal averages. The variable y is the 
Lagrange multiplier conjugate to x and r is the Lagrange multiplier conjugate to q 
(see e.g. AGS). They express the mean-square fluctuations of the magnetisation and 
of the overlaps between the thermodynamic state and, the ‘non-condensed’ patterns, 
respectively. 

Note that the order parameters x and y, which previously (BSD, TF, Bruce er a1 
1987) were considered as a particular feature of the V prescription, appear here in a 
natural way, which expresses the consequences of the forIt-ial transformation (1.7). 

Broken ergodicity in the dynamics of the network is parametrised by the solutions 
of the mean-field equations, which are just the equations for the saddle points (Amit 
et a1 1985, 1987b). These equations are obtained by varying the free energy f in ( 3 . 2 )  
with respect to the order parameters. One finds five equations 

m’l =(((Y - a )  tanh(Pcp))) (3 .5)  
x = b -((tanh(Pcp))) (3.6) 

1 
(26x - b*+((tanh’(Pcp)))) q = m  

q( 1 - a’)( 1 + b’) 
r =  

( 1  -P1 - P m ’  
qP2 ) (3.9) 

2U ( 1  - a 2 ) 2 b  2 
f fP 

+ 
P P’(1 - P I  -P2C)(l+ b’) ( “ 1  -pl - p2c y=- -  
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where 
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aP 
cp = 6 z - - (y  - 2 br) + 2 U 

mF (5” - a ) .  

3.1. Mean-jield equations at T =  0 

To study the retrieval states we assume that the network has a macroscopic overlap 
with a single stored pattern and microscopic overlap with the result. In the noiseless 
limit ( p  + 00) the expressions for the mean-field equations (3.5)-(3.9) reduce to 

(3.10) 

(3.11) 

(1 - a’)’( 1 + 2bx - b2) 
[ 1 - (1 - a 2 ) c ] ‘  

r =  (3.13) 

where 

m(1-a) -  U - ab(l-a’)’C 

m ( l +  a )  + U ab(1-  a2)2C 

G G [ 1 - ( 1 - a 2 ) C ]  41 = 

+ 4 2 =  G G [ l - ( l - a 2 ) C ]  

and 

e r f ( x / a )  =m exp(-z2/2) dz. I: 
The retrieval properties of the noiseless system are derived from a numerical solution 

of (3.10)-(3.13). We analyse separately the effect of each ofthe new terms, emphasising 
their respective influence on the properties of stored and spurious attractors. 

4. Properties of the network 

4.1. U=O; b = a  

Even when U = 0 the introduction of b = a improves the signal-to-noise ratio relative 
to the case b = 0, studied in AGS. We therefore consider this case first. There is a T = 0 
phase transition at a storage capacity a ,  = a,( a) .  a,( a )  decreases monotonically in 
the entire range of the bias, as can be observed in the lower curve in figure 1 .  Below 
this value the retrieval states are dynamically stable attractors with an overlap m bigger 
than m,(a) ,  whereas above a ,  the network is in a pure spin-glass phase characterised 
by m=0.  

Spurious states are attractors with macroscopic overlaps with several patterns. For 
U = 0 these spurious attractors pervade the dynamics of the system, much as in ACS. 
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Bias a 

Figure 1. Storage capacity a against the bias a. There is a continuous decrease in a when 
U = 0 and /a1 + 1 (lower curve), and a divergence when U is optimum (upper curve). 

As an illustration we present in figure 2 the storage capacity associated with attractors 
which are symmetric mixtures of two, three and five stored patterns. As la1 + 1 one 
finds a sequence of peaks corresponding to spurious states mixing an increasing number 
of patterns. Comparing these results with those of AGS we observe in figure 3 ( a )  and 
3( b )  a slight improvement in the performance of the network characterised by a small 
increase of the capacity of the single retrieval states, a,( b = a )  > a,( b = 0), and a small 
decrease of the capacity associated with spurious attractors, but it looks rather pitiful 
compared with the results of Gardner (1988). 

4.2. The efect of an optimising threshold: U # 0; b = a 

The behaviour changes radically when the optimising field is added to the system. We 
still find the same type of phase transition in the a - a  plane, but now a , ( a )  increases 

). L 

U 
.- 
x 
8 

Bias a 

Figure 2. Storage capacity of the spurious states mixing symmetrically two (D),  three (+) 
and five (0) patterns. 
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0.08 , i 

0 0.2 0.4 0.6 0.8 1.0 

Bias a 

Figure 3. ( a )  Storage capacity for single retrieval states for U = 0 and b = a (higher curve), 
and for U = 0 and b = 0 (lower curve). ( 6 )  Storage capacity of spurious states mixing two 
patterns for U = 0 and b = a (lower peak) compared with U = 0 and 6 = 0 (higher peak). 

monotonically for all a, as we can see in the upper curve in figure 1. In fact a,  goes as 

a , - k ( a ) [ ( l - a )  l n ( l - a ) ] - '  (4.1) 

when la1 + 1. The proportionality factor k ( a )  is studied in the limit of high bias in the 
next section. The value of U which optimises the network, i.e. the value which provides 
the highest a,  for a given bias, has the same parabolic shape deduced in the signal-to- 
noise analysis (figure 4) and agrees with the results obtained by Gardner (1988). When 
U is chosen at its optimum value the spurious attractors are eliminated. This is to be 
expected since the presence of a uniform field is a soft way of introducing a constraint 
on the states available to the network (AGS). In the thermodynamic limit it prefers 
states with a given magnetisation. The other effect of the optimising field is that a ,  is 
higher than in other schemes storing biased patterns by explicit storage prescriptions 
(AGS, BSD, TF). 
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Bias a 

0 

Figure 4. Optimising field U against a, for T = 0: ( i )  from the mean-field equations; (ii) 
from the analysis of the signal-to-noise ratio. 

5. Asymptotic behaviour 

In this section we examine analytically the asymptotic performance of the network in 
the limit la /+ 1, at T =  0 (AGS). When a = 1 - E ,  ( E < <  1) the error function can be 
expanded as 

exp( -x2) 
J;;X 

erf(x) = 1 - (5.1) 

Substituting in the set of equations (3.10)-(3.13) we find a divergence for the storage 
capacity close to the bound deduced by Gardner. The solutions when the parameter 
b is equal to the bias a are 

B = 0.307 (5.3) 

1 
D=-- (5.4) 2J;; - o*282 

-D(1 - U )  

x=m 
1 

C -  F = 0.522 
[In( 1 - 

(5.5) 

(5.6) 

1 
G=- (5.7) 2 G '  

U = -2( 1 - a ) {  1 + G[ln (1 - 

The constants ( A -  G )  have been computed from the numerical analysis of the solutions 
for E < lo-'. As E + O  (a + 1) our result merges with that of TF and BSD. This is 
accounted for by the asymptotic expansion which for general b and a close to 1 gives 
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The capacity is maximised at b = a and for b = 1 the results merge when a + 1. The 
agreement between the asymptotical expressions (5.2)-(5.7) and  the results obtained 
from the numerical study of the equations (3.10)-(3.13) in the / a /  + 1 limit is reflected 
in figure 5 ,  where, as an  example, the storage capacity is plotted against the bias. 

240  - 

200 - 

1 6 0 -  

120 - 

8 0  - 

40  - 

1 3 5 7 9 

1-0  

Figure 5. Storage capacity in the asymptotic limit. The full curve corresponds to (5 .2) .  
The squares correspond to numerical computation. 

x10-7 

6. Conclusions 

In this paper we have shown that a transformation, equation (1.7), of the dynamical 
variables-neural states or  spins-with its accompanying thresholds, interpolates 
between models of $1, -1 states and those of 0, 1. In the process a whole family of 
models is generated. When the continuous family of models is examined one finds 
that there is a natural way of optimising the performance of the network. Two 
contributions bring about the improvement. One is the appearance of a random local 
field, proportional to the C j  Jq,  and hence correlated with the patterns. This term 
reduces the destabilising noise. The second is the addition of a uniform external field 
which optimises the signal. Both terms depend on the continuous parameter which 
characterises the transformation and hence their effect can be optimised by searching 
in the range of values of this parameter. As a consequence, the retrieval properties of 
the network are improved, for all values of the bias, even relative to the 0, 1 model, 
which has produced values close to the bound found by Gardner. 
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